

Institución Universitaria

Acreditada en Alta Calidad

Docentes: Angel Arrieta Jiménez

1. Expresiones exponenciales y logarítmicas

Al comienzo del curso se estudiaron expresiones de la forma x^n ; esto es, expresiones con una base variable x y una potencia o exponente constante n. Ahora examinaremos expresiones de la forma a^x ; en este caso la base es una constante a y el exponente una variable x.

Los siguientes son ejemplos de expresiones exponenciales:

$$3^{x} - 5^{(2x-5)} + 1$$
, $\frac{4^{3x} - 7^{z}}{3^{4(x-2)}}$, $2^{x} - \sqrt[3]{5^{(\frac{x+2}{y-1})}}$

Las leyes de las exponentes dadas para las potencias, también aplican para los exponenciales.

Leyes de los exponentes. Sean a > 0 y b > 0, x; y; z números reales, se tienen las siguientes leyes para los exponentes.

1.
$$a^x a^y = a^{x+y}$$

$$3. \ \frac{a^x}{a^y} = a^{x-y}$$

$$5. (ab)^x = a^x b^x$$

2.
$$(a^x)^y = a^{xy}$$

4.
$$a^{-x} = \frac{1}{a^x}$$

$$6. \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

7.
$$a^x = a^y$$
 si y solo si $x = y$

2. Ecuaciones exponenciales

Una ecuación exponencial es aquella cuya incógnita se ubica en el exponente.

Por ejemplo, las ecuaciones $3^x = 81$, $\left(\frac{1}{3}\right)^{1-x} = 27$ y $7^{x-2} = 343$, son ecuaciones exponenciales.

Para resolver una ecuación exponencial se debe hallar el valor de la incógnita que hace verdadera la igualdad. Para ello, se aplican las propiedades de la potenciación.

Ejemplos: resolver las siguientes ecuaciones exponenciales.

1.
$$125^{x-1} = 15625$$

$$(5^3)^{x-1} = 5^6 \Rightarrow 5^{3x-3} = 5^6 \Rightarrow 3x - 3 = 6 \Rightarrow 3x = 6 + 3 \Rightarrow 3x = 9 \Rightarrow x = \frac{9}{3} \Rightarrow x = 3$$

2.
$$\left(\frac{1}{7}\right)^{x^2+2x} = \left(\frac{1}{49}\right)^{-3x-6}$$

 $\left(\frac{1}{7}\right)^{x^2+2x} = \left(\frac{1}{49}\right)^{-3x-6} \Rightarrow \left(7^{-1}\right)^{x^2+2x} = \left(7^{-2}\right)^{-3x-6} \Rightarrow 7^{-x^2-2x} = 7^{6x+12} \Rightarrow -x^2 - 2x = 6x + 12$
 $x^2 + 8x + 12 = 0 \Rightarrow (x+2)(x+6) = 0 \Rightarrow x = -2$ o $x = -6$

3.
$$2^{x} + 2^{x+1} + 2^{x+2} + 2^{x+3} = \frac{15}{8}$$

 $2^{x} + 2^{x+1} + 2^{x+2} + 2^{x+3} = \frac{15}{8} \Rightarrow 2^{x} + 2 \cdot 2^{x} + 2^{2} \cdot 2^{x} + 2^{3} \cdot 2^{x} = \frac{15}{8} \Rightarrow 2^{x} (1 + 2 + 4 + 8) = \frac{15}{8} \Rightarrow 2^{x} (15) = \frac{15}{8}$
 $2^{x} = \frac{1}{8} \Rightarrow 2^{x} = \frac{1}{2^{3}} \Rightarrow 2^{x} = 2^{-3} \Rightarrow x = -3$

4.
$$e^{x} + e^{-x} = 2$$

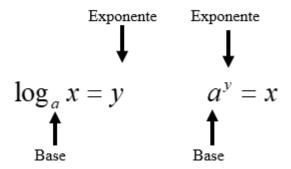
 $e^{x} + e^{-x} = 2 \Rightarrow e^{x} + \frac{1}{e^{x}} = 2 \Rightarrow \frac{e^{2x} + 1}{e^{x}} = 2 \Rightarrow e^{2x} + 1 = 2e^{x} \Rightarrow e^{2x} - 2e^{x} + 1 = 0 \Rightarrow (e^{x} - 1)^{2} = 0$
 $e^{x} - 1 = 0 \Rightarrow e^{x} = 1 \Rightarrow e^{x} = e^{0} \Rightarrow x = 0$

3. Ecuaciones logarítmicas

Una ecuación logarítmica es aquella cuya incógnita se ubica en el argumento. La expresión $y = \log_a x$ significa que $a^y = x$ con a > 0 y $a \ne 1$, es decir, el logaritmo de x con base a es el exponente al cual debe elevarse a para obtener x.

Cuando se usa la definición de logaritmo para intercambiar entre la forma logarítmica $y = \log_a x$ y la forma exponencial $a^y = x$, es útil observar que, en ambas formas la base es la misma.

Forma logarítmica Forma exponencial



Dos casos particulares se dan cuando las bases son 10 y e, se tiene:

$$\log_{10} x = \log x \quad y \quad \log_e x = \ln x$$

A este último se le conoce como logaritmo natural o Neperiano.

Ejemplos

1. $\log_3 3 = 1$ ya que $3^1 = 3$

2. $\log_5 1 = 0$ ya que $5^0 = 1$

3. $\log_4 64 = 3$ ya que $4^3 = 64$

4. $\log_3 81 = 4$ ya que $3^4 = 81$

5. $\log_5 \frac{1}{125} = -3$ ya que $5^{-3} = \frac{1}{5^3} = \frac{1}{125}$

6. $\log_{81} 3 = \frac{1}{4}$ ya que $81^{1/4} = \sqrt[4]{81} = 3$

PROPIEDADES DE LOS LOGARITMOS

Sea *a* un número real positivo, con $a \ne 1$ y $x, y, n \in \mathbb{R}^+$ se cumplen las siguientes propiedades.

1. Logaritmo de un producto: $\log_a(xy) = \log_a x + \log_a y$

Ejemplo: $\log_2(4.8) = \log_2 4 + \log_2 8 = 2 + 3 = 5$

2. Logaritmo de un cociente: $\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$

Ejemplo: $\log_2\left(\frac{8}{4}\right) = \log_2 8 - \log_2 4 = 3 - 2 = 1$

3. Logaritmo de una potencia: $\log_a x^n = n \log_a x$

Ejemplo: $\log_2 8^4 = 4\log_2 8 = 4 \cdot 3 = 12$

4. Logaritmo de una raíz: $\log_a \sqrt[n]{x} = \frac{1}{n} \log_a x$

Ejemplo: $\log_2 \sqrt[4]{8} = \frac{1}{4} \log_2 8 = \frac{1}{4} \cdot 3 = \frac{3}{4}$

5. Logaritmo en base a de 1: $\log_a 1 = 0$

Ejemplo: $\log_4 1 = 0$

6. Logaritmo en base a de a: $\log_a a = 1$

Ejemplo: $\log_8 8 = 1$

7. Propiedad del cambio de base: $\frac{\log_a x}{\log_a y} = \log_y x$

Ejemplo:
$$\log_9 81 = \frac{\log_3 81}{\log_3 9} = \frac{4}{2} = 2$$

8. Logaritmo en base a de a^x : $\log_a a^x = x$

Ejemplo:
$$\log_3 3^4 = 4$$

9. Base *a* elevado al logaritmo en base *a* de *x*: $a^{\log_a x} = x$

Ejemplo:
$$2^{\log_2 8} = 2^3 = 8$$

10. Si
$$\log_a x = \log_a y$$
 entonces $x = y$

Ejemplo 1: Usando las propiedades, sin calculadora, calcular el valor de:

1.
$$\log_3(3^5 + 3^5 + 3^5) = \log_3(3 \cdot 3^5) = \log_3(3^6) = 6\log_3 3 = 6 \cdot 1 = 6$$

2.
$$e^{\ln 10} - \log_{11} 121 = 10 - \log_{11} 11^2 = 10 - 2\log_{11} 11 = 10 - 2 \cdot 1 = 10 - 2 = 8$$

3.
$$\log_7 21 + \log_7 98 - \log_7 6 = \log_7 (21.98) - \log_7 6 = \log_7 \left(\frac{21.98}{6}\right) = \log_7 7^3 = 3$$

4.
$$2\log_5 50 - \frac{1}{2}\log_5 16 + \log_5 125 = \log_5 50^2 - \log_5 \sqrt{16} + \log_5 125 = \log_5 \left(\frac{2500}{4}\right) + \log_5 125$$

= $\log_5 \left(625\right) + \log_5 125 = \log_5 5^4 + \log_5 5^3 = \log_5 \left(5^4 \cdot 5^3\right) = \log_5 5^7 = 7$

Ejemplo 2: Expresar como un solo logaritmo y simplificar.

1.
$$\log 7 - 2\log xy + 5\log x - 4\log y^{-1} = \log 7 - \log(xy)^2 + \log x^5 - \log y^{-4} = \log \frac{7}{x^2y^2} + \log \frac{x^5}{y^{-4}} = \log\left(\frac{7}{x^2y^2} \cdot \frac{x^5}{y^{-4}}\right) = \log(7x^3y^2)$$

2.
$$2 \ln x + \ln (x^2 - x - 6) - \ln (x^3 - 4x) = \ln x^2 + \ln (x - 3)(x + 2) - \ln x(x + 2)(x - 2) = \ln \frac{x^2(x - 3)(x + 2)}{x(x + 2)(x - 2)} = \ln \frac{x(x - 3)}{(x - 2)}$$

3.
$$\log_3 2 + \frac{1}{2} \log_3 x - 2 \log_3 y = \log_3 2 + \log_3 \sqrt{x} - \log_3 y^2 = \log_3 \left(\frac{2\sqrt{x}}{y^2} \right)$$

Ejemplo 3: Expandir las siguientes expresiones de tal forma que no hayan ni productos, ni divisiones ni potencias en los logaritmos.

1.
$$\log_3(6x^4\sqrt{y}) = \log_3 6 + \log_3 x^4 + \log_3 y^{1/2} = \log_3 6 + 4\log_3 x + \frac{1}{2}\log_3 y = 2 + 4\log_3 x + \frac{1}{2}\log_3 y$$

2.
$$\log_a \left(\frac{xy^{3/2}}{z^5} \right) = \log_a x + \log_a y^{3/2} - \log_3 z^5 = \log_a x + \frac{3}{2} \log_a y - 5 \log_3 z$$

3.
$$\log_3\left(\frac{6x}{y^5}\right) = \log_3 6 + \log_3 x - \log_3 y^5 = \log_3 6 + \log_3 x - 5\log_3 y$$

4.
$$\log_5\left(x\sqrt{\frac{y}{z^3}}\right) = \log_5\left(\frac{xy^{1/2}}{z^{3/2}}\right) = \log_5 x + \log_5 y^{1/2} - \log_5 z^{3/2} = \log_5 x + \frac{1}{2}\log_5 y - \frac{3}{2}\log_5 z$$

Ejemplo 3: Resolver las siguientes ecuaciones logarítmicas.

1.
$$\log_3(x^2-4x+4)=4$$

Solución:

$$\log_3(x^2 - 4x + 4) = 4 \Rightarrow x^2 - 4x + 4 = 3^4 \Rightarrow x^2 - 4x + 4 = 81 \Rightarrow x^2 - 4x + 4 - 81 = 0 \Rightarrow x^2 - 4x - 77 = 0 \Rightarrow (x - 11)(x + 7) = 0 \Rightarrow x - 11 = 0 \quad o \quad x + 7 = 0 \Rightarrow x = 11 \quad o \quad x = -7$$

2.
$$2 \log x + \log(x+3) = \log 40x$$

Solución:

$$2\log x + \log(x+3) = \log 40x \Rightarrow \log x^{2} + \log(x+3) = \log 40x \Rightarrow \log\left[x^{2}(x+3)\right] = \log 40x \Rightarrow x^{2}(x+3) = 40x \Rightarrow x(x+3) = 40 \Rightarrow x^{2} + 3x - 40 = 0 \Rightarrow (x+8)(x-5) = 0 \Rightarrow x+8=0 \quad o \quad x-5=0 \Rightarrow x=-8 \quad o \quad x=5$$

Nota: Debido a que el argumento de un logaritmo debe ser positivo, la única solución válida es x = 5.

3.
$$\log_3(x-5) = 2$$

Solución:

$$\log_3(x-5) = 2 \Rightarrow x-5 = 3^2 \Rightarrow x-5 = 9 \Rightarrow x = 9+5 \Rightarrow x = 14$$

4.
$$\log_5 x + \log_5 (x+3) = 2\log_5 (x+1)$$

Solución:

$$\log_5 x + \log_5 (x+3) = 2\log_5 (x+1) \Rightarrow \log_5 [x(x+3)] = \log_5 (x+1)^2 \Rightarrow x(x+3) = (x+1)^2 \Rightarrow x^2 + 3x = x^2 + 2x + 1 \Rightarrow x = 1$$